SIMPLIFICAÇÕES DA FÓRMULA DE MANNING PARA O DIMENSIONAMENTO DE CONDUTOS LIVRES
Resumo
Texto completo:
PDFReferências
BERNARDO, Salazier. Manual de Irrigação. 6. ed. Viçosa: UFV, 1995. 656 p.
BONETTI, S. et al. Manning’s formula and Strickler’s scaling explained by a co-spectral budget model. Journal of Fluid Mechanics, v. 812, p. 1189–1212, 12 jan. 2017.
CHIN, D. A. Water resources engineering. Nova Jérsei: Prentice-Hall, 2000. 750p.
FELDMANN, D. et al. Near surface roughness estimation: A parameterization derived from artificial rainfall experiments and two-dimensional hydrodynamic modelling for multiple vegetation coverages. Journal of Hydrology, v. 617, p. 128786, 1 fev. 2023.
GAITAN, C. F.; BALAJI, V.; MOORE III, B. Can we obtain viable alternatives to Manning’s equation using genetic programming? Artificial Intelligence Research, v. 5, n. 2, 19 jul. 2016.
PERES, J. G. Hidráulica Agrícola. São Carlos: EdUFSCar, 2021. 429 p.
QUAN-JIU, W., XIN-LIN, D. Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water. Journal of Hydraulic Engineering. 2004.
VATANCHI, S. M.; MAGHREBI, M. F. Uncertainty in Rating-Curves Due to Manning Roughness Coefficient. Water Resources Management, v. 33, n. 15, p. 5153–5167, 25 nov. 2019.
ZWOLENIK, M.; MICHALEC, B. Effect of water surface slope and friction slope on the value of the estimated Manning’s roughness coefficient in gravel-bed streams. Journal of Hydrology and Hydromechanics, v. 71, n. 1, p. 80–90, 4 fev. 2023.
Apontamentos
- Não há apontamentos.