ESTRESSE SALINO EM CULTURAS AGRÍCOLAS: UMA BREVE REVISÃO

João Ítalo de Sousa, Paulo Henrique de Almeida Cartaxo, Raquel Maria de Sousa, João Paulo de Oliveira Santos, Igor Revelles Gomes Luna, Ademar Parente Alencar

Resumo


Solos com excesso de sais representam um dos principais problemas para a produção agrícola, principalmente em regiões áridas ou semiáridas, onde naturalmente os solos e a água de irrigação tendem a serem salinos. O cultivo agrícola em solos com essas características leva a uma série de desordens para as plantas, principalmente o estresse fisiológico, que é responsável por danos como a interrupção dos processos bioquímicos essenciais de respiração, fotossíntese e transpiração. Os problemas relativos ao estresse salino em plantas são verificados em todo o planeta e com as mais variadas culturas, porém, são mais evidenciados nas regiões que convivem diretamente com pouca oferta hídrica, altas taxas de evapotranspiração e solos com má drenagem. Diversas técnicas vêm sendo desenvolvidas e podem em curto prazo ser utilizadas para propiciar a produção em ambientes como esses. Por se tratar de um problema complexo, diversos trabalhos científicos buscam identificar a influência do estresse salino sobre a produtividade das culturas agrícolas, bem como estratégias de produção mesmo sob condições adversas. Assim, a presente revisão de literatura objetiva apresentar alguns  resultados observados a nível mundial para diversas culturas de interesse agronômico.


Texto completo:

PDF

Referências


ABEDINPOUR, M.; ROHANI, E. Effects of magnetized water application on soil and maize growth indices under different amounts of salt in the water. Journal of Water Reuse and Desalination, v. 7, n.3, p. 319-325, 2017. DOI: https://doi.org/10.2166/wrd.2016.216

AL-HARBI, A.; HEJAZI, A.; AL-OMRAN, A. Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, v. 24, n. 6, p. 1274-1280, 2017. DOI: https://doi.org/10.1016/j.sjbs.2016.01.005

ANOWER M, R.; PEEL, M. D.; MOTT, I.W.; WU, Y. Physiological processes associated with salinity tolerance in an alfalfa half-sib family. J Agro Crop Sci., v. 203, n. 6, p. 506–518, 2017. DOI: https://doi.org/10.1111/jac.12221

BASU, S.; GIRI, R. K.; BENAZIR, I. et al. Comprehensive physiological analyses and reactive oxygen species profiling in drought tolerant rice genotypes under salinity stress. Physiology and Molecular Biology of Plants, v. 23, n. 4, p. 837–850, 2017. DOI: https://doi.org/10.1007/s12298-017-0477-0

CHE-OTHMAN, M. H.; MILLAR, A. H.; TAYLOR, N. L. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants. Plant Cell Environ, v. 40, p. 2875 –2905, 2017. DOI: https://doi.org/10.1111/pce.13034

EL-MAGEED, T. A. A.; SEMIDA, W. M.; RADY, M. M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agricultural Water Management, v. 193, p. 46-54, 2017. DOI: https://doi.org/10.1016/j.agwat.2017.08.004

FARHANGI-ABRIZ, S.; NIKPOUR-RASHIDABAD, N. Effect of lignite on alleviation of salt toxicity in soybean (Glycine max L.) plants. Plant Physiology and Biochemistry, v. 120, p. 186-193, 2017. DOI: https://doi.org/10.1016/j.plaphy.2017.10.007

FARIED, H. N.; AYYUB, C. M.; AMJAD, M.; et al. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation. J. Sci. Food Agric., v. 97, p. 1868–1875, 2017. DOI: https://doi.org/10.1002/jsfa.7989

FAROOQ, M.; GOGOI, N.; HUSSAIN, M. Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, v. 118, p. 199-217, 2017. DOI: https://doi.org/10.1016/j.plaphy.2017.06.020

FASCIGLIONE, G.; CASANOVAS, E. M.; QUILLEHAUQUY, V. Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae, v. 195, n. 12, p. 154-162, 2015. DOI: https://doi.org/10.1016/j.scienta.2015.09.015

FENG, G.; ZHANGA, Z.; WAN, C.; LU, P.; BAKOURA, A. Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management, v. 193, p. 205-213, 2017. DOI: https://doi.org/10.1016/j.agwat.2017.07.026

HANNACHI, S.; VAN LABEKE, M. C. Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, v. 228, n.26, p. 56-65, 2018. DOI: https://doi.org/10.1016/j.scienta.2017.10.002

HEGAZI, A. M.; EL-SHRAIY, A. M.; GHONAME, A. A. Mitigation of Salt Stress Negative Effects on Sweet Pepper Using Arbuscular Mycorrhizal Fungi (AMF), Bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanzen, v. 69, n. 2, p. 91-102, 2017. DOI: https://doi.org/10.1007/s10343-017-0393-9

JUNG, S.; HÜTSCH, W. B.; SCHUBERT, S. Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity. Plant Physiology and Biochemistry, v. 113, p.198-207, 2017. DOI: https://doi.org/10.1016/j.plaphy.2017.02.009

KATERJI, N.; MASTRORILLI, M.; LAHMER, F. Z.; MAALOUF, F.; OWEIS T. Faba bean productivity in saline–drought conditions. European Journal of Agronomy, v. 35, p. 2 – 12, 2011. DOI: https://doi.org/10.1016/j.eja.2011.03.001

KUMAR, K.; KUMAR, M.; KIM, S.R.; RYU, H.; CHO, Y.G. Insights into genomics of salt stress response in rice. Rice, v. 6, p. 1-15, 2013. DOI: https://doi.org/10.1186/1939-8433-6-27

LEOGRANDE, R.; VITTI, C.; LOPEDOTA, O.; VENTRELLA, D.; MONTEMURRO, F. Effects of Irrigation Volume and Saline Water On Maize Yield and Soil in Southern Italy. Irrig. and Drain., v. 65, p. 243–253, 2016. DOI: https://doi.org/10.1002/ird.1964

LOTFI, R.; GHASSEMI-GOLEZANI, K. Influence of salicylic acid and silicon on seed development and quality of mung bean under salt stress. Seed Science and Technology, v. 43, n. 1, p. 52-61, 2015. DOI: https://doi.org/10.13140/RG.2.2.14540.31369

MAHMOOD, S.; DAUR, I.; HUSSAIN, M. B. et al. Silicon Application and Rhizobacterial Inoculation Regulate Mung Bean Response to Saline Water Irrigation. Clean – Soil, Air, Water, v. 45, n.8, p. 1-10, 2017. DOI: https://doi.org/10.1002/clen.201600436

MENG, N.; YU, B. J.; GUO, J. S. Ameliorative effects of inoculation with Bradyrhizobium japonicum on Glycine max and Glycine soja seedlings under salt stress. Plant Growth Regul, v. 80, p.137-147, 2016. DOI: https://doi.org/10.1007/s10725-016-0150-6

MUNNS, R.; TESTER, M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, v. 59, p. 651-681, 2008. DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

NAZAR, R; IQBAL, N.; SYEED, S.; KHAN, N. A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol, v. 168, p. 807–815, 2011. DOI: https://doi.org/10.1016/j.jplph.2010.11.001

PARIDA, A. K.; DAS, A. B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ, v. 60, p. 324–349, 2005. DOI: https://doi.org/10.1016/j.ecoenv.2004.06.010

ROSSATTO, T.; AMARAL, M. N.; BENITEZ, L. C. et al. Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiology and Molecular Biology of Plants, v. 23, n. 4, p. 865–875, 2017. DOI: https://doi.org/10.1007/s12298-017-0467-2

SETIA, R.; GOTTSCHALK, P.; SMITH, P.; MARSCHNER, P.; BALDOCK, J.; SETIA, D.; SMITH, J. Soil salinity decreases global soil organic carbon stocks. Science of the Total Environment, v. 465, p. 267–272, 2013. DOI: https://doi.org/10.1016/j.scitotenv.2012.08.028

SHABALA, S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, v. 112, p.1209–1221, 2013. DOI: https://doi.org/10.1093/aob/mct205

WANG, Q.; WU, C.; XIE, B.; LIU, Y.; CUI, J.; CHEN, G.; ZHANG, Y. Model analysing the antioxidant responses of leaves and roots of switchgrass to NaCl-salinity stress. Plant Physiol. Biochem., v. 58, p. 288-296, 2012. DOI: https://doi.org/10.1016/j.plaphy.2012.06.021

YUAN, Z.; DRUZHININA, I. S.; LABBÉ, J. et al. Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Scientific Reports, v. 6, n. 32467, p. 1-13, 2016. DOI: https://doi.org/10.1038/srep32467

ZHAO, Z.; LI, Y.; LIU, H.; ZHAI, X.; DENG, M.; DONG, Y.; FAN, G. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa. PLoS ONE, v. 12, n.10, p. 1-23, 2017. DOI: https://doi.org/10.1371/journal.pone.0185455

ZHU, C.; HUANG, M.; ZHAI, Y.; ZHANG, Z.; ZHENG, J; LIU, Z. Response of gas exchange and chlorophyll fluorescence of maize to alternate irrigation with fresh- and brackish water. Acta Agriculturae Scandinavica, v. 67, n.5, 2017. DOI: https://doi.org/10.1080/09064710.2017.1301547

ZHU, M., SHABALA, S., SHABALA, L., FAN, Y. AND ZHOU, M. X. Evaluating Predictive Values of Various Physiological Indices for Salinity Stress Tolerance in Wheat. J Agro Crop Sci, v. 202, p. 115–124, 2016. DOI: https://doi.org/10.1111/jac.12122




DOI: https://doi.org/10.30945/rcr-v21i3.2739

Apontamentos

  • Não há apontamentos.